生产指标#
SGLang 通过 Prometheus 暴露以下指标。这些指标以 $name
(模型名称)作为命名空间。
监控仪表盘示例可在 examples/monitoring/grafana.json 中找到。
以下是指标示例
$ curl http://localhost:30000/metrics
# HELP sglang:prompt_tokens_total Number of prefill tokens processed.
# TYPE sglang:prompt_tokens_total counter
sglang:prompt_tokens_total{model_name="meta-llama/Llama-3.1-8B-Instruct"} 8.128902e+06
# HELP sglang:generation_tokens_total Number of generation tokens processed.
# TYPE sglang:generation_tokens_total counter
sglang:generation_tokens_total{model_name="meta-llama/Llama-3.1-8B-Instruct"} 7.557572e+06
# HELP sglang:token_usage The token usage
# TYPE sglang:token_usage gauge
sglang:token_usage{model_name="meta-llama/Llama-3.1-8B-Instruct"} 0.28
# HELP sglang:cache_hit_rate The cache hit rate
# TYPE sglang:cache_hit_rate gauge
sglang:cache_hit_rate{model_name="meta-llama/Llama-3.1-8B-Instruct"} 0.007507552643049313
# HELP sglang:time_to_first_token_seconds Histogram of time to first token in seconds.
# TYPE sglang:time_to_first_token_seconds histogram
sglang:time_to_first_token_seconds_sum{model_name="meta-llama/Llama-3.1-8B-Instruct"} 2.3518979474117756e+06
sglang:time_to_first_token_seconds_bucket{le="0.001",model_name="meta-llama/Llama-3.1-8B-Instruct"} 0.0
sglang:time_to_first_token_seconds_bucket{le="0.005",model_name="meta-llama/Llama-3.1-8B-Instruct"} 0.0
sglang:time_to_first_token_seconds_bucket{le="0.01",model_name="meta-llama/Llama-3.1-8B-Instruct"} 0.0
sglang:time_to_first_token_seconds_bucket{le="0.02",model_name="meta-llama/Llama-3.1-8B-Instruct"} 0.0
sglang:time_to_first_token_seconds_bucket{le="0.04",model_name="meta-llama/Llama-3.1-8B-Instruct"} 1.0
sglang:time_to_first_token_seconds_bucket{le="0.06",model_name="meta-llama/Llama-3.1-8B-Instruct"} 3.0
sglang:time_to_first_token_seconds_bucket{le="0.08",model_name="meta-llama/Llama-3.1-8B-Instruct"} 6.0
sglang:time_to_first_token_seconds_bucket{le="0.1",model_name="meta-llama/Llama-3.1-8B-Instruct"} 6.0
sglang:time_to_first_token_seconds_bucket{le="0.25",model_name="meta-llama/Llama-3.1-8B-Instruct"} 6.0
sglang:time_to_first_token_seconds_bucket{le="0.5",model_name="meta-llama/Llama-3.1-8B-Instruct"} 6.0
sglang:time_to_first_token_seconds_bucket{le="0.75",model_name="meta-llama/Llama-3.1-8B-Instruct"} 6.0
sglang:time_to_first_token_seconds_bucket{le="1.0",model_name="meta-llama/Llama-3.1-8B-Instruct"} 27.0
sglang:time_to_first_token_seconds_bucket{le="2.5",model_name="meta-llama/Llama-3.1-8B-Instruct"} 140.0
sglang:time_to_first_token_seconds_bucket{le="5.0",model_name="meta-llama/Llama-3.1-8B-Instruct"} 314.0
sglang:time_to_first_token_seconds_bucket{le="7.5",model_name="meta-llama/Llama-3.1-8B-Instruct"} 941.0
sglang:time_to_first_token_seconds_bucket{le="10.0",model_name="meta-llama/Llama-3.1-8B-Instruct"} 1330.0
sglang:time_to_first_token_seconds_bucket{le="15.0",model_name="meta-llama/Llama-3.1-8B-Instruct"} 1970.0
sglang:time_to_first_token_seconds_bucket{le="20.0",model_name="meta-llama/Llama-3.1-8B-Instruct"} 2326.0
sglang:time_to_first_token_seconds_bucket{le="25.0",model_name="meta-llama/Llama-3.1-8B-Instruct"} 2417.0
sglang:time_to_first_token_seconds_bucket{le="30.0",model_name="meta-llama/Llama-3.1-8B-Instruct"} 2513.0
sglang:time_to_first_token_seconds_bucket{le="+Inf",model_name="meta-llama/Llama-3.1-8B-Instruct"} 11008.0
sglang:time_to_first_token_seconds_count{model_name="meta-llama/Llama-3.1-8B-Instruct"} 11008.0
# HELP sglang:e2e_request_latency_seconds Histogram of End-to-end request latency in seconds
# TYPE sglang:e2e_request_latency_seconds histogram
sglang:e2e_request_latency_seconds_sum{model_name="meta-llama/Llama-3.1-8B-Instruct"} 3.116093850019932e+06
sglang:e2e_request_latency_seconds_bucket{le="0.3",model_name="meta-llama/Llama-3.1-8B-Instruct"} 0.0
sglang:e2e_request_latency_seconds_bucket{le="0.5",model_name="meta-llama/Llama-3.1-8B-Instruct"} 6.0
sglang:e2e_request_latency_seconds_bucket{le="0.8",model_name="meta-llama/Llama-3.1-8B-Instruct"} 6.0
sglang:e2e_request_latency_seconds_bucket{le="1.0",model_name="meta-llama/Llama-3.1-8B-Instruct"} 6.0
sglang:e2e_request_latency_seconds_bucket{le="1.5",model_name="meta-llama/Llama-3.1-8B-Instruct"} 6.0
sglang:e2e_request_latency_seconds_bucket{le="2.0",model_name="meta-llama/Llama-3.1-8B-Instruct"} 6.0
sglang:e2e_request_latency_seconds_bucket{le="2.5",model_name="meta-llama/Llama-3.1-8B-Instruct"} 6.0
sglang:e2e_request_latency_seconds_bucket{le="5.0",model_name="meta-llama/Llama-3.1-8B-Instruct"} 7.0
sglang:e2e_request_latency_seconds_bucket{le="10.0",model_name="meta-llama/Llama-3.1-8B-Instruct"} 10.0
sglang:e2e_request_latency_seconds_bucket{le="15.0",model_name="meta-llama/Llama-3.1-8B-Instruct"} 11.0
sglang:e2e_request_latency_seconds_bucket{le="20.0",model_name="meta-llama/Llama-3.1-8B-Instruct"} 14.0
sglang:e2e_request_latency_seconds_bucket{le="30.0",model_name="meta-llama/Llama-3.1-8B-Instruct"} 247.0
sglang:e2e_request_latency_seconds_bucket{le="40.0",model_name="meta-llama/Llama-3.1-8B-Instruct"} 486.0
sglang:e2e_request_latency_seconds_bucket{le="50.0",model_name="meta-llama/Llama-3.1-8B-Instruct"} 845.0
sglang:e2e_request_latency_seconds_bucket{le="60.0",model_name="meta-llama/Llama-3.1-8B-Instruct"} 1513.0
sglang:e2e_request_latency_seconds_bucket{le="+Inf",model_name="meta-llama/Llama-3.1-8B-Instruct"} 11228.0
sglang:e2e_request_latency_seconds_count{model_name="meta-llama/Llama-3.1-8B-Instruct"} 11228.0
# HELP sglang:time_per_output_token_seconds Histogram of time per output token in seconds.
# TYPE sglang:time_per_output_token_seconds histogram
sglang:time_per_output_token_seconds_sum{model_name="meta-llama/Llama-3.1-8B-Instruct"} 866964.5791549598
sglang:time_per_output_token_seconds_bucket{le="0.005",model_name="meta-llama/Llama-3.1-8B-Instruct"} 1.0
sglang:time_per_output_token_seconds_bucket{le="0.01",model_name="meta-llama/Llama-3.1-8B-Instruct"} 73.0
sglang:time_per_output_token_seconds_bucket{le="0.015",model_name="meta-llama/Llama-3.1-8B-Instruct"} 382.0
sglang:time_per_output_token_seconds_bucket{le="0.02",model_name="meta-llama/Llama-3.1-8B-Instruct"} 593.0
sglang:time_per_output_token_seconds_bucket{le="0.025",model_name="meta-llama/Llama-3.1-8B-Instruct"} 855.0
sglang:time_per_output_token_seconds_bucket{le="0.03",model_name="meta-llama/Llama-3.1-8B-Instruct"} 1035.0
sglang:time_per_output_token_seconds_bucket{le="0.04",model_name="meta-llama/Llama-3.1-8B-Instruct"} 1815.0
sglang:time_per_output_token_seconds_bucket{le="0.05",model_name="meta-llama/Llama-3.1-8B-Instruct"} 11685.0
sglang:time_per_output_token_seconds_bucket{le="0.075",model_name="meta-llama/Llama-3.1-8B-Instruct"} 433413.0
sglang:time_per_output_token_seconds_bucket{le="0.1",model_name="meta-llama/Llama-3.1-8B-Instruct"} 4.950195e+06
sglang:time_per_output_token_seconds_bucket{le="0.15",model_name="meta-llama/Llama-3.1-8B-Instruct"} 7.039435e+06
sglang:time_per_output_token_seconds_bucket{le="0.2",model_name="meta-llama/Llama-3.1-8B-Instruct"} 7.171662e+06
sglang:time_per_output_token_seconds_bucket{le="0.3",model_name="meta-llama/Llama-3.1-8B-Instruct"} 7.266055e+06
sglang:time_per_output_token_seconds_bucket{le="0.4",model_name="meta-llama/Llama-3.1-8B-Instruct"} 7.296752e+06
sglang:time_per_output_token_seconds_bucket{le="0.5",model_name="meta-llama/Llama-3.1-8B-Instruct"} 7.312226e+06
sglang:time_per_output_token_seconds_bucket{le="0.75",model_name="meta-llama/Llama-3.1-8B-Instruct"} 7.339675e+06
sglang:time_per_output_token_seconds_bucket{le="1.0",model_name="meta-llama/Llama-3.1-8B-Instruct"} 7.357747e+06
sglang:time_per_output_token_seconds_bucket{le="2.5",model_name="meta-llama/Llama-3.1-8B-Instruct"} 7.389414e+06
sglang:time_per_output_token_seconds_bucket{le="+Inf",model_name="meta-llama/Llama-3.1-8B-Instruct"} 7.400757e+06
sglang:time_per_output_token_seconds_count{model_name="meta-llama/Llama-3.1-8B-Instruct"} 7.400757e+06
# HELP sglang:func_latency_seconds Function latency in seconds
# TYPE sglang:func_latency_seconds histogram
sglang:func_latency_seconds_sum{name="generate_request"} 4.514771912145079
sglang:func_latency_seconds_bucket{le="0.05",name="generate_request"} 14006.0
sglang:func_latency_seconds_bucket{le="0.07500000000000001",name="generate_request"} 14006.0
sglang:func_latency_seconds_bucket{le="0.1125",name="generate_request"} 14006.0
sglang:func_latency_seconds_bucket{le="0.16875",name="generate_request"} 14006.0
sglang:func_latency_seconds_bucket{le="0.253125",name="generate_request"} 14006.0
sglang:func_latency_seconds_bucket{le="0.3796875",name="generate_request"} 14006.0
sglang:func_latency_seconds_bucket{le="0.56953125",name="generate_request"} 14006.0
sglang:func_latency_seconds_bucket{le="0.8542968750000001",name="generate_request"} 14006.0
sglang:func_latency_seconds_bucket{le="1.2814453125",name="generate_request"} 14006.0
sglang:func_latency_seconds_bucket{le="1.9221679687500002",name="generate_request"} 14006.0
sglang:func_latency_seconds_bucket{le="2.8832519531250003",name="generate_request"} 14006.0
sglang:func_latency_seconds_bucket{le="4.3248779296875",name="generate_request"} 14007.0
sglang:func_latency_seconds_bucket{le="6.487316894531251",name="generate_request"} 14007.0
sglang:func_latency_seconds_bucket{le="9.730975341796876",name="generate_request"} 14007.0
sglang:func_latency_seconds_bucket{le="14.596463012695313",name="generate_request"} 14007.0
sglang:func_latency_seconds_bucket{le="21.89469451904297",name="generate_request"} 14007.0
sglang:func_latency_seconds_bucket{le="32.84204177856446",name="generate_request"} 14007.0
sglang:func_latency_seconds_bucket{le="49.26306266784668",name="generate_request"} 14007.0
sglang:func_latency_seconds_bucket{le="+Inf",name="generate_request"} 14007.0
sglang:func_latency_seconds_count{name="generate_request"} 14007.0
# HELP sglang:num_running_reqs The number of running requests
# TYPE sglang:num_running_reqs gauge
sglang:num_running_reqs{model_name="meta-llama/Llama-3.1-8B-Instruct"} 162.0
# HELP sglang:num_used_tokens The number of used tokens
# TYPE sglang:num_used_tokens gauge
sglang:num_used_tokens{model_name="meta-llama/Llama-3.1-8B-Instruct"} 123859.0
# HELP sglang:gen_throughput The generate throughput (token/s)
# TYPE sglang:gen_throughput gauge
sglang:gen_throughput{model_name="meta-llama/Llama-3.1-8B-Instruct"} 86.50814177726902
# HELP sglang:num_queue_reqs The number of requests in the waiting queue
# TYPE sglang:num_queue_reqs gauge
sglang:num_queue_reqs{model_name="meta-llama/Llama-3.1-8B-Instruct"} 2826.0
设置指南#
本节描述如何设置 examples/monitoring
目录下提供的监控堆栈(Prometheus + Grafana)。
先决条件#
已安装 Docker 和 Docker Compose
运行中的 SGLang 服务器已启用指标收集
使用方法#
启动已启用指标收集的 SGLang 服务器
python -m sglang.launch_server --model-path <your_model_path> --port 30000 --enable-metrics
将
<your_model_path>
替换为实际的模型路径(例如,meta-llama/Meta-Llama-3.1-8B-Instruct
)。确保监控堆栈可以访问到服务器(如果在 Docker 中运行,可能需要--host 0.0.0.0
)。默认情况下,指标端点将在http://<sglang_server_host>:30000/metrics
提供。导航到监控示例目录
cd examples/monitoring
启动监控堆栈
docker compose up -d
此命令将在后台启动 Prometheus 和 Grafana。
访问监控界面
Grafana: 打开您的网页浏览器并访问 http://localhost:3000。
Prometheus: 打开您的网页浏览器并访问 http://localhost:9090。
登录 Grafana
默认用户名:
admin
默认密码:
admin
首次登录时会提示您修改密码。
查看仪表盘: SGLang 仪表盘已预先配置,应自动可用。导航到
Dashboards
->Browse
->SGLang Monitoring
文件夹 ->SGLang Dashboard
。
故障排除#
端口冲突: 如果遇到“端口已被分配”等错误,请检查是否有其他服务(包括之前运行的 Prometheus/Grafana 实例)正在使用端口
9090
或3000
。使用docker ps
查找正在运行的容器,使用docker stop <container_id>
停止它们,或者使用lsof -i :<port>
查找使用这些端口的其他进程。如果这些端口与系统上的其他关键服务永久冲突,您可能需要调整docker-compose.yaml
文件中的端口设置。
要在 Docker Compose 文件中将 Grafana 的端口修改为其他端口(例如 3090),您需要在 grafana 服务下明确指定端口映射。
Option 1: Add GF_SERVER_HTTP_PORT to the environment section:
```
environment:
- GF_AUTH_ANONYMOUS_ENABLED=true
- GF_SERVER_HTTP_PORT=3090 # <-- Add this line
```
Option 2: Use port mapping:
```
grafana:
image: grafana/grafana:latest
container_name: grafana
ports:
- "3090:3000" # <-- Host:Container port mapping
```
连接问题
确保 Prometheus 和 Grafana 容器都在运行(
docker ps
)。验证 Grafana 中的 Prometheus 数据源配置(通常通过
grafana/datasources/datasource.yaml
自动配置)。前往Connections
->Data sources
->Prometheus
。URL 应指向 Prometheus 服务(例如,http://prometheus:9090
)。确认您的 SGLang 服务器正在运行,并且指标端点(
http://<sglang_server_host>:30000/metrics
)可以从 Prometheus 容器内部访问。如果 SGLang 运行在您的主机上而 Prometheus 在 Docker 中,请在prometheus.yaml
的抓取配置中使用host.docker.internal
(在 Docker Desktop 上)或您机器的网络 IP,而不是localhost
。
仪表盘无数据
向您的 SGLang 服务器生成一些流量以产生指标。例如,运行一个基准测试
python3 -m sglang.bench_serving --backend sglang --dataset-name random --num-prompts 100 --random-input 128 --random-output 128
在 Prometheus UI(
http://localhost:9090
)的Status
->Targets
下检查 SGLang 端点是否已成功抓取。验证 Prometheus 指标中的
model_name
和instance
标签与 Grafana 仪表盘中使用的变量是否匹配。您可能需要调整 Grafana 仪表盘变量或 Prometheus 配置中的标签。
配置文件#
监控设置由 examples/monitoring
目录下的以下文件定义
docker-compose.yaml
:定义 Prometheus 和 Grafana 服务。prometheus.yaml
:Prometheus 配置,包括抓取目标。grafana/datasources/datasource.yaml
:配置 Grafana 的 Prometheus 数据源。grafana/dashboards/config/dashboard.yaml
:告知 Grafana 从指定路径加载仪表盘。grafana/dashboards/json/sglang-dashboard.json
:JSON 格式的实际 Grafana 仪表盘定义。
您可以通过修改这些文件来自定义设置。例如,如果您的 SGLang 服务器运行在不同的主机或端口上,您可能需要更新 prometheus.yaml
中的 static_configs
目标。
检查指标是否正在收集#
运行 python3 -m sglang.bench_serving --backend sglang --dataset-name random --num-prompts 3000 --random-input 1024 --random-output 1024 --random-range-ratio 0.5
来生成一些请求。
然后您应该能够在 Grafana 仪表盘中看到指标。